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INTRODUCTION

Food webs characterise f luxes of energy and matter 
throughout ecosystems, being a fundamental expres-
sion of ecosystem functioning (Barnes et al.,  2018) 
and one of the more frequently studied types of eco-
logical networks (Morales-Castilla et al.,  2015). The 
structure of food webs (Camacho et al., 2002; Dunne 
et al.,  2002a; Williams & Martinez,  2000) and how 
they respond to environmental gradients and human 

disturbances (Ings et al.,  2009; Pellissier et al.,  2017; 
Thompson et al.,  2012; Tylianakis & Morris,  2017) 
has been extensively studied and few generalities have 
emerged or agreed upon (Mestre et al.,  2022). While 
trophic structures have been shown to vary across 
environmental or human-related gradients (Albouy 
et al.,  2019; Kortsch et al.,  2019; Layer et al.,  2010; 
Mendoza & Araújo,  2019, 2022), there still is a de-
bate as to whether such drivers would affect metrics 
of network topology among empirical food webs, how 
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Abstract

Networks describe nodes connected by links, with numbers of links per node, the 

degree, forming a range of distributions including random and scale-free. How 

network topologies emerge in natural systems still puzzles scientists. Based on 

previous theoretical simulations, we predict that scale-free food webs are favourably 

selected by random disturbances while random food webs are selected by targeted 

disturbances. We assume that lower human pressures are more likely associated 

with random disturbances, whereas higher pressures are associated with targeted 

ones. We examine these predictions using 351 empirical food webs, generally 

confirming our predictions. Should the topology of food webs respond to changes 

in the magnitude of disturbances in a predictable fashion, consistently across 

ecosystems and scales of organisation, it would provide a baseline expectation 

to understand and predict the consequences of human pressures on ecosystem 

dynamics.
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these metrics would be affected and how much (Dunne 
et al., 2002a).

Previous theoretical simulations enabled a few predic-
tions on these topics, but beg for empirical testing. An 
influential study based on simulations of attacks across 
artificially constructed networks (Albert et al.,  2000) 
proposed that networks with different distributions of 
links among nodes (different degree distribution) would 
be differently affected by distinct types of attacks. 
Targeted attacks on networks should disproportionately 
affect those with a scale-free degree distribution. In con-
trast, networks with random degree distribution should 
be less sensitive to targeted attacks.

It follows from these simulations that, in dynamic 
adaptive systems, networks affected by different types 
of disturbances (random or targeted), should select fa-
vourably networks with different topologies. Inspired by 
these simulations, we propose that, all other things being 
equal, ecosystems exposed to random disturbances 
would favourably select networks with scale-free de-
gree distributions, whereas ecosystems exposed to non-
random disturbances would favourably select networks 
with random degree distribution.

Categorising disturbances as random or targeted 
is difficult outside the realm of controlled simulations 
though. To address the issue, we make the following as-
sumptions. First, random disturbances predominate in 
ecosystems exposed to stochastic dynamics of local ex-
tinction and colonisation, as one would expect if pop-
ulations were subject to background natural variability 
(Hanski,  1991, 1998; Keymer et al.,  2000). Second, tar-
geted disturbances predominate in ecosystems exposed 
to extrinsic disturbances to natural population dynam-
ics. That is the case of areas exposed to high levels of 
human-driven disturbances, which unlike natural sto-
chasticity are geographically structured. The assump-
tion is supported by evidence that human disturbances 
induce spatially or phylogenetically clustered patterns 
of threat (Safi & Pettorelli, 2010), targeting species with 
poor dispersal ability, slow life histories, large body 
sizes, or narrow habitat breadth (Chichorro et al., 2020; 
González-Suárez et al.,  2013; Lee & Jetz,  2011; Purvis 
et al., 2000; Suraci et al., 2021).

We expect a consistent trend for stochastic network 
node removal across low disturbance regions, while tar-
geted node removal should predominate across regions 
exposed to high levels of extrinsic disturbances. Given 
that targeted disturbances arising from human impacts 
are exceptional and overlap with background distur-
bances, any deviation from the expected topology should 
be captured by variation in targeted disturbances caused 
by human impacts rather than by random processes.

One difficulty with testing theoretical inferences of 
food web topology at broad geographical scales is that 
empirical food web data are under-replicated, noisy, 
gathered for a variety of purposes and using a diver-
sity of methods (Mestre et al.,  2022). Consequently, 

generalisations with such data are difficult. To ad-
dress under-replication, we gathered a globally distrib-
uted multiple ecosystem food web database (Figure  1, 
panel e). To maximise comparability across databases, 
we pruned the dataset with several exclusion rules (see 
methods). To avoid imposing a ‘black and white’ topo-
logical classification on networks that would neglect 
the actual fuzziness in the data, we determined the de-
gree distribution of each food web and then developed 
an approach that measures their distance to pure scale-
free and random topologies (Figure 1, panel f; Figure 2). 
Next, we evaluated the relationship between the distance 
to pure topologies of degree distribution and the level 
of human disturbance after matching the food web lo-
cation with a human disturbance index (for the ocean 
Halpern et al., 2015; for land, coastlines and freshwater 
Venter et al., 2016a, 2016b). To reduce noise, typical of 
large-scale ecological data collected for a variety of dif-
ferent purposes, we binned the food web data. Binning 
is a familiar approach in data mining to help elucidate 
relationships obscured by noisy data (Han et al.,  2012; 
Pyle, 1999). Finally, we simulated extinctions (Bellingeri 
et al., 2013) to compare the robustness to extinction of 
food webs with varying distances to pure random and 
pure scale-free topologies.

M ATERI A L A N D M ETHODS

Food web and anthropogenic impact datasets

Food web data were retrieved from online databases, 
the Globalweb (Thompson et al.,  2012) and EcoBase 
(Colléter et al., 2013). We obtained 393 food web matrices 
and kept 351, after removing those with one or more non-
numerical values, repeated species names and absence 
of accurate information on the geographical location 
(Appendix S3). For food webs obtained from Globalweb, 
we retrieved the geographical location from the origi-
nal publication. The dataset used has a global coverage 
(Figure 1, panel e) and encompasses data across the four 
general types of ecosystems on earth, that is, coastal 
(29.34%), freshwater (36.47%), marine (15.10%) and ter-
restrial (19.09%) (Figure  S1). The food webs ranged, 
in number of nodes, from 3 to 162 (first quartile  =  13; 
median = 21; mean = 29.18; third quartile = 33) and, in 
number of links, from 2 to 1902 (first quartile = 26; me-
dian = 62; mean = 114.7; third quartile = 141.5). Given the 
diversity of food web data sources, there is substantial 
heterogeneity in the resolution of nodes (both at taxo-
nomic, e.g. species vs. higher-order classifications, and 
functional levels, e.g. empirically derived vs. inferred 
trophic relationships). Different resolutions across (and 
within) food webs can affect the topology thus the com-
parability among them (Hemprich-Bennett et al., 2021). 
This is a common shortcoming in studies resorting to 
pooled data sets, such as the Globalweb database; they 
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F I G U R E  1   Typical network configuration and degree distribution in each one of the topologies considered (top panel), empirical examples 
from the dataset, geographical distribution and human pressure (mid panel) and food web classification (bottom panel): (a) pure scale-free 
network (network and degree distribution) topology; (b) pure random network topology; (c) example of a network close to pure scale-free 
topology (Kelleway et al., 2010); (d) example of a network close to pure random topology (Khan & Panikkar, 2009); (e) global distribution of 
the food webs in the dataset with the terrestrial impact metric (human footprint [Venter et al., 2016a, 2016b]) and the marine impact metric 
(cumulative impact to marine ecosystems (Halpern et al., 2015)) scaled from 0 to 1 for comparability; (f) categorisation of the food webs in 
the dataset where the signalled corners are those in which the food webs are closer to each of the two pure topologies (x axis: Correlation 
coefficient to gaussian (RG); y axis: Correlation coefficient to power-law (RPL); see methods). The pattern observed in panel (f), whereby 
some values fall along the y axis (RG = 0) and almost all points fall below an imagined diagonal line (defined RG = RPL), is a consequence of 
Equation 2. According to this equation, the computation of RG is conducted only for food webs to which the degree distribution is such that the 
left portion of the curve is present (μ + σ/3 > 0), and the maximum degree (Kmax) is big enough to also allow the right portion of the curve to be 
present (kmax > μ + σ) (Figure S5). Food webs with degree distributions not conforming to these conditions would have an RG = 0, which is the 
case with most that would otherwise occupy the upper triangle of the plot.
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generally have to live with and consider the data limi-
tations carefully when interpreting results (e.g. Baiser 
et al., 2019; Mora et al., 2018). The a priori expectation is 
that a large number of food webs pooled together, their 
global distribution, and the wide coverage of ecosystem 
types encompassed, contributes to smooth away sources 
of noise and allows revealing emergent signals arising 
from the data.

Information on human impacts was retrieved from 
two sources, one covering the terrestrial, coastal and 
freshwater ecosystems (the human footprint, Venter 
et al., 2016a, 2016b), and the other covering the marine 
food webs (the cumulative human impact on the world's 
ocean, Halpern et al.,  2015). The human footprint 
combines the following disturbance drivers: built envi-
ronments, population density, electric infrastructure, 
croplands, pasture lands, roads, railways and navigable 
waterways (Venter et al., 2016a). The cumulative human 
impact on the world's ocean considers the following im-
pacts on global marine ecosystems: land-based stressors 
(nutrient pollution, organic and inorganic pollution, di-
rect human light pollution); fishing-related stressors (de-
mersal destructive, demersal non-destructive high and 
low bycatch, pelagic high and low bycatch, artisanal); 
climate change stressors (sea surface temperature anom-
alies, ultraviolet anomalies, ocean acidification) and 
ocean-based stressors (sea level rise, commercial ship-
ping, invasive species, ocean-based pollution, benthic 
structures) (Halpern et al., 2015).

Fuzzy categorisation of food webs

Rather than imposing a hard structural topology on 
food webs, we acknowledge that empirical food webs dis-
play a gradient of similarity to a-priori-defined network 
structures. Focusing on degree distribution, that is, the 
frequency distribution of the number of links that every 

node in the food web has with other nodes, we devised an 
approach to characterise each food web based on the dis-
tance that its empirical degree distribution topology has 
to each one of the pure topologies usually considered, 
scale-free and random. First, we compared the shape 
of the degree distribution with both, a power-law curve 
(characteristic of scale-free networks) and a Gaussian 
curve (characteristic of random networks). There is still 
some discussion on the functional form of the degree dis-
tributions with longer tails, with authors considering ei-
ther that food webs have power-law degree distributions 
(Montoya & Solé, 2002), or that these are closer to an 
exponential distribution rather than a power-law (Dunne 
et al., 2002a; Marina et al., 2018). Here, we wanted to test 
explicitly how close the food webs were to a scale-free 
network, as described by Albert et al.  (2000). As such, 
we used power-law and Gaussian curve fitting to explore 
the extent to which the food webs in our database are 
closer to scale-free or random degree distributions re-
spectively. Then, each food web was plotted in a plane 
defined by the fit to each of these curves. Knowing the 
position of the scale-free and random topologies in this 
plane, we measured the Euclidean distance between each 
food web and these positions to characterise the food 
web structure.

Scale-free and random topologies are defined by the 
homogeneity of the degree distribution, as defined by 
Solé and Valverde  (2004). The degree distribution was 
considered to be either highly heterogeneous (few nodes 
highly connected), as with scale-free networks, or highly 
homogeneous (the number of connections is nearly 
equivalent across nodes), as with random networks.

Degree distribution

We calculated the degree (ki), that is, the number of 
connections that each node (species) in the food web 

F I G U R E  2   Location of an hypothetical food web in the (RG, RPL) plane (grey circle), with the distances to pure gaussian (random; D2PG) 
and pure power-law (D2PL) characterising its topology.
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(i) has to other nodes, and computed the histogram of 
non-cumulative, non-binned (the degree frequencies 
were not grouped into classes), degree distributions, p(k) 
(frequency distribution of the number of links per node). 
The shape of the histograms' curve was then used to as-
sess the extent to which food webs can be categorised 
into scale-free and random frequency distributions.

Curve fitting and Pearson correlation 
coefficient (R)

We fitted the resulting food web's degree histogram, 
p(k), with power-law PPL(x) and gaussian PG(x) curves. 
The best-fitting parameters were calculated applying the 
Nelder–Mead method (Nelder & Mead,  1965), which 
performs unconstrained nonlinear minimisation of the 
sum of squared residuals with respect to its parameters. 
The correlation coefficient between the sampled dataset 
pj and the fitted dataset Pj is defined as (Weisstein, 2021):

 where:

are the ‘regression sum of squares’ and the ‘total sum of 
squares’ respectively, with ⟨p⟩ being the average of the mea-
sured degree frequencies.

The value of R varies within the range [ − 1, 1], with a 
value of R = 1 implying that the relationship between P 
and p can be described by a linear equation (linear cor-
relation); R = −1 implying that P and p are anti-correlated, 
and R = 0 implying that there is no linear correlation.

Power-Law heuristics

We fitted sampled histogram pj set points using a gen-
eralised Power-Law function, PPL(k) = a∗kb + c, with 
parameters a, b, c and computed the best-fitting param-
eters and RPL for each food web in our database.

Gaussian heuristics

We fitted sampled histogram pj set points using a gen-
eralised Gaussian function, PG(k) = a∗ e

−
(k−�)2

2�2 + b with 
parameters a, b, μ (mean), σ (standard deviation).

We computed the best-fitting parameters and RG for 
each food web in our database. We finally imposed the 
following criteria:

 to ensure that only food webs with both parts of the 
Gaussian bell-shaped curve of the degree distribution were 
considered. All others, not conforming with the conditions 
defined in Equation (2) were not considered (with RG being 
set to zero) (Figure S5).

Category membership

Considering we got R ∈ [0,1] for all food webs, RG and 
RPL can be used as a surrogate to gaussian and power-
law categories of membership probabilities (Figure  1, 
panel h). By plotting each food web in the (RG, RPL) plane 
and deriving the distance to pure topologies (Figure 2), 
we assessed the similarity of each food web with the pure 
topologies. If, for instance, a food web has an RG close 
to 1 and an RPL close to 0 then it would be plotted closer 
to the random pure topology. On the other hand, a food 
web with an RG close to 0 and an RPL close to 1 would be 
plotted closer to the scale-free pure topology.

As we identified pure categories (scale-free and ran-
dom) on the (RG, RPL) plane, we characterised the food 
webs by computing the Euclidean distance to each pure 
topology: ‘distance to power law’ (D2PL), and ‘distance 
to pure gaussian’ (D2PG), as shown in Figure 2.

While focusing on a single descriptor of food web struc-
ture, that is, degree, which is receiving increasing attention 
by ecologists (Araújo et al., 2011; Jordano et al., 2003; Poisot 
& Gravel, 2014), we avoid issues related to the covariance 
of different food web properties (Vermaat et al., 2009).

Relating food web structure to human pressure

To explore the relationship between the Euclidean dis-
tance of each food web with the pure category in the 
RPL/RG plane and human pressure, the distances were 
binned as follows: the number of bins in each graph was 
chosen by an optimisation procedure by which we chose 
the maximum number of bins with R  > 0.8 (as shown, 
with an example, in Figure  S2). Finally, we calculated 
correlations between distances to pure topologies and 
human impact, by resorting to linear regression.

Evaluation of food robustness to 
species extinction

We evaluated the robustness of individual food webs to 
species extinctions by simulating species removal. We 
followed the strategy proposed by Bellingeri et al. (2013), 
by which the species removal follows a gradient of 

(1)R =
SSreg

SStot

SSreg =
��

Pj−⟨p⟩
�2

SStot =
��

pj−⟨p⟩
�2

(2)RG =

{
R, if 𝜇+

𝜎

3
>0 and kmax>𝜇+𝜎

0, otherwise
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intentionality (I) varying from 0 to 1. If I = 0 the removal 
of nodes is random. If I = 1 the removal of targets pref-
erentially highly connected nodes, that is, hubs. The 
probability of each node being removed is derived from 
the family of exponential probability mass functions 
(Equation 3):

 where k is node degree, kmin and kmax are the minimum 
and maximum number of trophic interactions, Nk is the 
number of nodes with degree k and Ni is number of nodes 
with degree i.

Then we used a metric of network robustness (R50), as 
follows (Equation 4):

 where E is the number of primary extinctions required 
to cause 50% of species to be extinguished and S is the 
total number of nodes. Due to the stochastic nature of 
these simulations, but considering the computation re-
quirements, we simulated 100 repetitions of each param-
eter set.

In agreement with previous research (Bellingeri 
et al., 2013), we expected food webs closer to the scale-
free distribution of degree, to have an R50 shaped like 
a decreasing sigmoid curve, showing a threshold in 
the intentionality index, at which the probability of 
removing hubs is higher. Random food webs, in par-
ticular, would have a more linear response of R50 with 
intentionality.

Food web structure and response to disturbance

Having characterised each food web according to the 
distance to each one of the two pure topologies consid-
ered, and after evaluating how each one of them would 
respond to disturbance (in the form of species extinc-
tions), the next logical step was to evaluate if structure 
was related to the estimated food web robustness in our 
empirical dataset. To assess such a relationship, we fit-
ted a cumulative Weibull function (describing a sig-
moid curve; Equation 5) to each of the robustness plots 
(Appendix S2).

 The shape of the sigmoid curve is determined by parame-
ters b and c. We retrieved, to each food web, values for the 
parameters b and c (in Equation 5).

We expected different topologies to react differently 
to an increasingly directed attack, depending on degree 

distribution homogeneity. A food web closer to scale-
free would be robust to attacks until a given level of in-
tentionality, corresponding to the extinction of poorly 
connected species (which are the most of the species in 
these networks). As intentionality increases, expressing a 
higher probability of attacking hubs, we expect a sharp 
decrease in R50, which should be described by a sigmoid 
curve. In random food webs, as we move along a ho-
mogeneity gradient concerning the degree distribution, 
we would not see such a threshold in the shape of R50. 
In these networks, particularly the random where most 
species has roughly the same number of trophic inter-
actions, the intentionality of the attack does not affect 
robustness. As such, we expect the R50 to be more linear.

The datasets were retrieved from online data-
bases and pre-processed using the FWebs R package 
(Mestre, 2022). The value for the anthropogenic impact 
on each food web was obtained using the function extract 
from the package raster (Hijmans, 2022) in the R soft-
ware, version 4.1.2 (R Core Team, 2021). The evaluation 
of food web robustness to disturbances was conducted in 
R, with code available in the Figshare repository. Data 
regression and plotting were conducted using Matlab 
(MATLAB, 2010).

RESU LTS

The food webs examined were predominantly closer to 
the random topology (average distance to pure scale-
free: 0.870; average distance to pure random: 0.773).

Several food webs in our dataset are small. Although 
small size can limit the capacity to classify food webs 
according to topological profiles, removing small food 
webs would truncate a pattern of interest: larger food 
webs tend to be located in regions of lower human dis-
turbance, while smaller food webs are present almost 
exclusively in regions with greater human disturbances 
(Figure S4). Removing small food webs would thus bias 
sampling towards food webs generally exposed to lower 
impacts. Also, it would limit the capacity to discern clear 
topological patterns. Smaller food webs span through a 
variety of topologies, from scale-free to random, if any-
thing favouring random ones (Figure  3), while bigger 
food webs tend to be closer to scale-free (D2SF is sym-
metrical to D2PG, hence with high values in the y axis 
represent low D2SF) (Figure 3; Figure S4).

Consistent with predictions, we found that distance 
to pure scale-free topology is generally positively associ-
ated with increasing human disturbance (Figure 4). That 
is, food webs closer to the scale-free are mainly found 
in less impacted regions. In contrast, food webs with a 
topology closer to random are generally negatively as-
sociated with increasing levels of disturbance and found 
mainly in regions with high human footprint (Figure 4). 
Note that despite binning to help visualise noisy data (see 
methods), the slope of the regression on the raw dataset 

(3)PE(K � I ) =
(1−I )(kmax−k)Nk

∑i=kmax

i=kmin
(1−I )(kmax−i)Ni

, 0 ≤ I < 1

(4)R50 =
E

S

(5)y = a(� − ���( − b .xc))
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F I G U R E  3   Plot depicting the relation between distance to pure gaussian (D2PG) and the number of nodes in each food web (nodes). Notice 
that distances to pure scale-free (D2SF) are symmetrical with D2PG so that high values of D2PG corresponded to low values of D2SF and vice 
versa.

F I G U R E  4   Relationship between human pressure and the distance to each of the three pure topologies in each ecosystem. Human pressure 
was evaluated as the cumulative impact on the world's oceans (Halpern et al., 2015) on coastal and marine ecosystems and the human footprint 
(Venter et al., 2016a, 2016b) impact on terrestrial and freshwater ecosystems. The relation between distance to pure topologies and the human 
pressure was characterised by the best fitting linear relationship. Note that values in the x-axis represent the distance to pure topologies (D2PG 
and D2PL) to each food web (as shown in Figure 2). As such, values greater than 1 are possible, only the RG and RPL are constrained to vary 
between 0 and 1. Blue circles represent the raw data (scaled by food web size) and the blue dashed line represents the regression on these data. 
The black points and the black regression line represent the binned data. Error bars express the variance of the averaged values in each bin. The 
regression equation represented refers to the regression on the binned data.
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(the blue dashed lines in Figure 4) is similar to the regres-
sion using binned values (black lines in Figure 4). Only 
for marine food webs, our prediction is not verified with 
distance to scale-free responding negatively to increased 
human disturbance.

Consistently with simulations of random and tar-
geted attacks on virtually constructed networks (Albert 
et al.,  2000), our simulations on empirical food webs 
show that robustness to node removal is linked to degree 
distribution (Figure 5). Food webs with degree distribu-
tion closer to scale-free (predominant in less impacted 
regions) tend to show a sigmoid curve in the response 
to increasingly intentional disturbance (increasing prob-
ability of extinguishing hubs): the R50 (Equation  4) is 
relatively stable until it decreases abruptly (Figure  5). 
This threshold represents the point at which hubs have 
a higher probability of being targeted by removal. On 
the other hand, as node homogeneity increases (as with 
random food webs) robustness to an increasingly inten-
tional species removal becomes more linear (Figure  5, 
and Appendix S2 of the Supporting Information).

DISCUSSION

Whether food web topologies are predictable from ex-
ternal factors, such as environmental and/or human-
induced stressors, is a longstanding question in ecology 
(Pimm, 1980; Pimm et al., 1991; Pimm & Ktiching, 1987). 

Previous theoretical simulations suggest that networks, 
not just food webs, are differentially affected by ran-
dom or targeted attacks (Albert et al., 2000). The idea 
of ‘attacks’ on networks is relatively abstract but, in 
ecology, it can be translated into disturbance, that is 
‘an event or force, of nonbiological or biological origin, 
that brings about mortality to organisms and changes in 
their spatial patterning in the ecosystems they inhabit’ 
(Paine,  2015). Disturbances in ecosystems can be ran-
dom or target specific components of the ecosystem. 
The former originates in the absence of extraordinary 
events, including background processes, such as envi-
ronmental stochasticity or ecological drift causing spe-
cies local abundances, extinctions and colonisations 
to fluctuate around a central tendency (Lande,  1993; 
Quental & Marshall,  2013). The latter can be assimi-
lated to extraordinary non-random events affecting 
the persistence or movement of specifically sensitive 
traits, populations or communities. Global to regional 
extinction events, following climate changes or other 
human-induced disturbances are examples falling in 
this category given that they were selective to the traits 
targeted (bad genes) as well as locations (bad luck) (Hof 
et al., 2010; McKinney, 1997; Purvis et al., 2000; Raup & 
Gould, 1993; Thuiller et al., 2011).

Using a spatially distributed empirical dataset of food 
webs, we tested the prediction that different levels of 
disturbance would affect food web topology differently. 
Despite noise in the data, we found that the predicted 

F I G U R E  5   Location of the food webs in the parameter space defined by the parameters (b) and (c) in Equation 5. The gradient, from red 
to blue, refers to the increasing distance to pure scale-free). The parameters (b) and (c) in Equation 5 determine the shape of the R50 curve. The 
smaller plots (those in food webs GW330, GW185, EB444 and EB145) depict the robustness (R50) curve as the intentionality increases (the R50 
plots for all the food webs are available as Appendix S2). Within each R50 plot: The grey points represent the average of R50 with increasing 
intentionality. The blue line refers to the cumulative Weibull function used to fit the R50 values.
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trajectories are generally met. Regions subjected to 
higher levels of human disturbances (that we propose 
should lead often to a structure of targeted attacks on 
species within communities) have a predominance of 
random networks, whereas regions with lower distur-
bances (that we propose should often coexist with ran-
domness resulting from stochastic dynamic processes) 
have a greater predominance of scale-free (with the no-
table exception of marine and coastal food webs).

Only in the marine food webs did we observe a pat-
tern departing from expectation: a negative relationship 
between distance to scale-free and human-induced dis-
turbance. In other words, in more disturbed regions we 
found that scale-free food webs were more common. 
Consistently, the distance to pure gaussian increased 
with human disturbance. Marine food webs were 
found to be fundamentally different from their terres-
trial and freshwater counterparts in previous research 
(Link, 2002): are more connected and have higher om-
nivory than terrestrial and freshwater food webs. These 
properties might explain why marine food webs are 
more resilient and further from scale-free (Figure  3; 
Figure S3).

The departure from expected marine food web topol-
ogy relationships with disturbance needs to be further 
investigated, as should the generality of the consis-
tency of our observations in terrestrial, freshwater and 
coastal ecosystems. But another important question 
arising from our observations concerns the nature of the 
mechanisms underpinning the adjustment of food web 
topologies to disturbance intensity. A parsimonious 
mechanistic explanation is that the different structures 
of ‘attacks’ (random versus targeted, here postulated 
to covary with the intensity of human disturbances) 
generate different network topologies by node deletion 
(local extinction). With time, should the structure of the 
attacks be persistent, topologies with greater levels of 
resilience to specific types of attacks would be favour-
ably selected (Devictor et al., 2008; de Visser et al., 2011; 
Kitahara & Fujii, 1994; Start et al., 2020). An example 
of this are intermittent rivers in arid regions, which are 
cyclically affected by drought, destroying the structure 
of freshwater food webs periodically, but quickly re-
covering during the wet winter and/or spring (López-
Rodríguez et al., 2012; Power et al., 2013).

The measured association of food web size with dis-
turbance also deserves further investigation. However, 
it is consistent with previous research demonstrating 
that food chain length, the number of nodes and links 
tend to decrease with disturbance (Jenkins et al., 1992; 
Parker & Huryn, 2006; McHugh et al., 2010; Thompson 
& Mcintosh, 1998).

If our results were general across scales and systems, 
we would predict that disturbance-prone ecosystems 
would likely favour food webs with a more homoge-
neous, or random topology of degree (Aspin et al., 2019; 
Ledger et al., 2011; Peralta-Maraver et al., 2020). Indeed, 

disturbance has been shown to promote generalist spe-
cies in freshwater ecosystems (Canning et al.,  2018; 
Larson et al., 2018). In terrestrial ecosystems, the same 
tendency has been observed, with diet breadth being a 
main predictor of susceptibility to habitat fragmenta-
tion in vertebrate species (Keinath et al., 2017; Swihart 
et al., 2003).

Conceptually, the more non-homogeneous a network 
is, the higher its dependence on fewer nodes; eliminating 
these few nodes has a high cost for its stability (Albert 
et al.,  2000). Targeted attacks, such as those predicted 
within regions with higher levels of human-induced dis-
turbance, have potentially more severe effects in scale-
free networks than random. Furthermore, the effects of 
random disturbances are potentially greater in random 
than in scale-free networks, considering that the aver-
age degree among nodes is higher in the former (Albert 
et al., 2000).

We further tested this inference with a simulation ex-
periment on the empirical food webs used. We removed 
species, increasing the probability of extinguishing 
hubs (the intentionality), and evaluating the impact on 
the network structure. The resistance to extinctions was 
evaluated with a robustness index, accounting for the 
number of primary extinctions required to extinguish 
50% of the species in the network. Consistent with ini-
tial expectations, scale-free food webs are resilient to 
node deletion up until a threshold after which the to-
pology collapses into a different state, while those with 
topologies closer to random show a more linearised re-
sponse considering they are not as heavily dependent 
on hubs.

Several studies have addressed the consequences of 
species removal on network topology, evaluating the ef-
fects of an increasing probability of removing highly in-
terconnected species or hubs, largely supporting the view 
that, all other things being equal, targeting the removal 
of highly interconnected species disproportionately in-
creases the number of secondary extinctions (Bellingeri 
et al., 2013; Dunne et al., 2002b; Eklöf & Ebenman, 2006; 
Quince et al., 2005). Not all things are equal, however, and 
the effects of species removal are also differentiated across 
species with different trophic levels. Generally, the lower 
the trophic level, the higher the number of secondary ex-
tinctions expected (Eklöf & Ebenman, 2006; Staniczenko 
et al., 2010). Additionally, as Dunne and Williams (2009) 
alert, the least connected species are not irrelevant, as they 
can play an important role in the structural integrity of 
food webs. These authors resorted to simulated food webs 
and evaluated the robustness to the effects of three types 
of species extinction, random, prioritising least connected 
species and more connected species. They concluded that 
the primary extinction of least connected species might 
have a substantial impact on the number of secondary 
extinctions, particularly for food webs with lower con-
nectance. In some cases, the response to the extinction 
of least connected species is comparable to that of most 
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connected species, revealing the relevance of poorly con-
nected species to maintaining food web structure.

As with other studies using data from several sources, 
individually recorded for different purposes, there are 
limitations that need to be recognised. First, the food 
webs we used were characterised at a variety of scales, 
from local to oceanic/continental, but the disturbances 
were derived from maps using interpolations at a particu-
lar resolution (Montoya & Galiana, 2017; Raffaelli, 2005; 
Raffaelli & Moller, 1999). Such mismatches in the scale 
of the observations can cause errors of association either 
because the average disturbance values at a given cell 
might not provide an accurate indication of the distur-
bance experienced by the food web at a local level (if 
the food web scale is smaller than the resolution of the 
disturbance data) or because the area from which the 
food web was derived encompasses multiple cells, of 
which the point from which we obtained the disturbance 
value (the centroid) is not representative (if the food web 
scale is larger than the resolution of the disturbance 
data). Second, the same mismatching problems may also 
arise from measurements occurring in different times 
(Raffaelli, 2005; Raffaelli & Moller, 1999). No guaran-
tee exists of perfect matching between the timing of the 
food web observations and the measurements of dis-
turbances, although a great effort was made to reduce 
this potential source of noise (see methods). Third, food 
webs are gathered using data collected with different 
approaches, assembled at different resolutions and ex-
amined with different analytical methods (Dunne, 2005; 
Martinez et al., 1999; Wood et al., 2015). The outcome of 
such diversity is that food webs may not be fully always 
comparable (Mestre et al., 2022). Additionally, we used 
composite indices of human impact. The measurements 
included have varying effects on food webs and weights 
given to individual indicators may not reflect their bio-
logical impacts appropriately. Lastly, despite the global 
distribution of our dataset, there are clear spatial sam-
pling biases towards Europe and North America (see 
also Poisot et al., 2021). Several of the most well-sampled 
regions are also the most impacted, leaving underrep-
resented regions with lower impacts (like tropical areas 
across South America, South East Asia and Africa). 
Our dataset also misses important biodiversity areas ex-
posed to high impacts, such as the Indian subcontinent 
and East Asia.

Other studies examining coarse distributional pat-
terns among properties of trophic structures also found 
regularities in network topologies. Examining the global 
structure of marine fish food webs Albouy et al.  (2019) 
found that a low degree of spatial modularity was re-
lated to sea surface temperature. A study on vertebrate 
food webs across Europe (Braga et al., 2019), found that 
food web metrics (including connectance and mean tro-
phic level) had a non-random spatial distribution across 
Europe. In higher latitudes and mountain ranges food 
webs had fewer species, shorter food chain lengths and a 

higher proportion of basal species. In central and eastern 
Europe food webs had higher food chain length and gen-
erality (diet breadth). Finally, in southern Europe, food 
webs were found to be more species-rich, and have higher 
link density and clustering coefficient. Yet previous stud-
ies, examining food webs described with locally sampled 
data, have broadly failed to depict general relation-
ships between network topologies and environmental or 
human-related variables (Cohen et al., 1993; Dunne, 2005; 
Pimm et al., 1988). Several shortcomings might have hin-
dered the detection of such relationships but unequivocal 
generalities between food web topologies and disturbance 
variables will require confirmation using fully replicated 
studies across geographical and environmental gradients 
(e.g. Matias et al., 2017); an endeavour that is becoming 
possible by coupling metabarcoding with classic survey 
methodologies (Pereira et al., 2021).

If inferences from simulations, supported by coarse 
empirical analysis, are confirmed with experimentally 
derived data, then it would open new perspectives for 
understanding how ecosystems self-organise in response 
to environmental and human-mediated stressors. Such 
understanding is critical to predict the long-term conse-
quences of environmental changes on biodiversity and 
ecosystem functioning.

AU T HOR CON TR I BU T IONS
Conceptualisation: MBA, FM, AR; Formal analysis: 
FM, AR, MBA; Writing: FM, MBA, AR.

ACK NOW LEDGEM EN TS
This study was supported by Fundação para a Ciência 
e a Tecnologia project PTDC/AAG-MAA/3764/2014 
(FM, MBA); European Union – H2020 AQUACOSM 
project No 731065 (FM, AR, MBA) and AQUACOSM-
plus project No 871081 (AR, MBA); Spanish Ministry of 
Science, Innovation and Universities project PGC2018–
099363-B-I00 (MBA). We are grateful to two anonymous 
reviewers for the thoughtful suggestions made to earlier 
versions of our manuscript.

F U N DI NG I N FOR M AT ION
H2020 Environment, Grant/Award Number: 
731065; Spanish Ministry of Science, Innovation, 
and Universities, Grant/Award Number: PGC2018-
099363-B-I00; European Union; Fundação para a 
Ciência e a Tecnologia, Grant/Award Number: PTDC/
AAG-MAA/3764/2014

PEER R EV I EW
The peer review history for this article is available at 
https://publo​ns.com/publo​n/10.1111/ele.14107.

DATA AVA I LA I BI LI T Y STAT EM EN T
The dataset and code used for the analysis described 
here were made available in Figshare (doi: 10.6084/
m9.figshare.14518362.v3).

https://publons.com/publon/10.1111/ele.14107
https://doi.org/10.6084/m9.figshare.14518362.v3
https://doi.org/10.6084/m9.figshare.14518362.v3


      |  11MESTRE et al.

ORCI D
Frederico Mestre   https://orcid.
org/0000-0002-7390-1120 
Alejandro Rozenfeld   https://orcid.
org/0000-0003-3765-4633 
Miguel B. Araújo   https://orcid.
org/0000-0002-5107-7265 

R E F ER E NC E S
Albert, R., Jeong, H. & Barabási, A.-L. (2000) Error and attack toler-

ance of complex networks. Nature, 406, 378–482.
Albouy, C., Archambault, P., Appeltans, W., Araújo, M.B., 

Beauchesne, D., Cazelles, K. et al. (2019) The marine fish food 
web is globally connected. Nature Ecology and Evolution, 3, 
1153–1161.

Araújo, M.B., Rozenfeld, A., Rahbek, C. & Marquet, P.A. (2011) 
Using species co-occurrence networks to assess the impacts of 
climate change. Ecography, 34, 897–908.

Aspin, T.W.H., Khamis, K., Matthews, T.J., Milner, A.M., 
O'Callaghan, M.J., Trimmer, M. et al. (2019) Extreme drought 
pushes stream invertebrate communities over functional thresh-
olds. Global Change Biology, 25, 230–244.

Baiser, B., Gravel, D., Cirtwill, A.R., Dunne, J.A., Fahimipour, A.K., 
Gilarranz, L.J. et al. (2019) Ecogeographical rules and the mac-
roecology of food webs. Global Ecology and Biogeography, 28, 
1204–1218.

Barnes, A.D., Jochum, M., Lefcheck, J.S., Eisenhauer, N., Scherber, 
C., O'Connor, M.I. et al. (2018) Energy flux: the Link between 
multitrophic biodiversity and ecosystem functioning. Trends in 
Ecology and Evolution, 33, 186–197.

Bellingeri, M., Cassi, D. & Vincenzi, S. (2013) Increasing the extinc-
tion risk of highly connected species causes a sharp robust-to-
fragile transition in empirical food webs. Ecological Modelling, 
251, 1–8.

Braga, J., Pollock, L.J., Barros, C., Galiana, N., Montoya, J.M., 
Gravel, D. et al. (2019) Spatial analyses of multi-trophic ter-
restrial vertebrate assemblages in Europe. Global Ecology and 
Biogeography, 28, 1636–1648.

Camacho, J., Guimerà, R. & Nunes Amaral, L.A. (2002) Robust pat-
terns in food web structure. Physical Review Letters, 88, 228102.

Canning, A.D., Death, R.G. & Gardner, E.M. (2018) The effect of 
forest canopy and f lood disturbance on New Zealand stream 
food web structure and robustness. Austral Ecology, 43, 
352–358.

Chichorro, F., Urbano, F., Teixeira, D., Väre, H., Pinto, T., Brummitt, 
N. et al. (2020) Species traits predict extinction risk across the 
Tree of Life. bioRxiv 2020.07.01.183053.

Cohen, J.E., Beaver, R.A., Cousins, S.H., DeAngelis, D.L., 
Goldwasser, K.L., Holt, R.D. et al. (1993) Improving food webs. 
Ecological Society of America, 74, 252–258.

Colléter, M., Valls, A., Guitton, J., Morissette, L., Arreguín-
Sánchez, F., Christensen, V. et al. (2013) EcoBase: a repository 
solution to gather and communicate information from EwE mod-
els. Available from: http://ecoba​se.ecopa​th.org [Accessed 5th 
July 2019].

Devictor, V., Julliard, R., Clavel, J., Jiguet, F., Lee, A. & Couvet, D. 
(2008) Functional biotic homogenization of bird communities in 
disturbed landscapes. Global Ecology and Biogeography, 17(2), 
252–261.

Dunne, J.A. (2005) The network structure of food webs. In: Pascual, 
M. & Dunne, J.A. (Eds.) Ecological networks: linking structure 
to dynamics in food webs. Oxford, New York: Oxford University 
Press, pp. 27–86.

Dunne, J.A. & Williams, R.J. (2009) Cascading extinctions and com-
munity collapse in model food webs. Philosophical Transactions 
of the Royal Society, B: Biological Sciences, 364, 1711–1723.

Dunne, J.A., Williams, R.J. & Martinez, N.D. (2002a) Food-web 
structure and network theory: the role of connectance and size. 
Proceedings of the National Academy of Sciences of the United 
States of America, 99, 12917–12922.

Dunne, J.A., Williams, R.J. & Martinez, N.D. (2002b) Network struc-
ture and biodiversity loss in food webs: robustness increases with 
connectance. Ecology Letters, 5, 558–567.

Eklöf, A. & Ebenman, B. (2006) Species loss and secondary extinc-
tions in simple and complex model communities. Journal of 
Animal Ecology, 75, 239–246.

González-Suárez, M., Gómez, A. & Revilla, E. (2013) Which intrinsic 
traits predict vulnerability to extinction depends on the actual 
threatening processes. Ecosphere, 4, 1–16.

Halpern, B.S., Frazier, M., Potapenko, J., Casey, K.S., Koenig, K., 
Longo, C. et al. (2015) Spatial and temporal changes in cumulative 
human impacts on the world's ocean. Nature Communications, 6, 
7615.

Han, J., Kamber, M. & Pei, J. (2012) Data mining: concepts and tech-
niques, Third edition. Waltham, USA: Morgan Kaufmann 
Publishers.

Hanski, I. (1991) Single-species metapopulation dynamics: concepts, 
models and observations. Biological Journal of the Linnean 
Society, 42, 17–38.

Hanski, I. (1998) Metapopulation dynamics. Nature, 396, 41–49.
Hemprich-Bennett, D.R., Oliveira, H.F.M., le Comber, S.C., Rossiter, 

S.J. & Clare, E.L. (2021) Assessing the impact of taxon resolution 
on network structure. Ecology, 102, e03256.

Hijmans, R.J. (2022) raster: Geographic Data Analysis and Modeling. 
R package version 3.5-21. Available from:https://CRAN.R-proje​
ct.org/packa​ge=raster [Accessed 1st July 2022].

Hof, C., Rahbek, C. & Araújo, M.B. (2010) Phylogenetic signals in 
the climatic niches of the world's amphibians. Ecography, 33, 
242–250.

Ings, T.C., Montoya, J.M., Bascompte, J., Blüthgen, N., Brown, L., 
Dormann, C.F. et al. (2009) Review: ecological networks - be-
yond food webs. Journal of Animal Ecology, 78, 253–269.

Jenkins, B., Kitching, R.L. & Pimm, S.L. (1992) Productivity, distur-
bance and food web structure at a local spatial scale in experi-
mental container habitats. Oikos, 65, 249–255.

Jordano, P., Bascompte, J. & Olesen, J.M. (2003) Invariant proper-
ties in coevolutionary networks of plant–animal interactions. 
Ecology Letters, 6, 69–81.

Keinath, D.A., Doak, D.F., Hodges, K.E., Prugh, L.R., Fagan, W., 
Sekercioglu, C.H. et al. (2017) A global analysis of traits predict-
ing species sensitivity to habitat fragmentation. Global Ecology 
and Biogeography, 26, 115–127.

Kelleway, J., Mazumder, D., Wilson, G.G., Saintilan, N., Knowles, 
L., Iles, J. et al. (2010) Trophic structure of benthic resources and 
consumers varies across a regulated floodplain wetland. Marine 
and Freshwater Research, 61(4), 430–440.

Keymer, J.E., Marquet, P.A., Velasco-Hernández, J.X. & Levin, S.A. 
(2000) Extinction thresholds and metapopulation persistence in 
dynamic landscapes. The American Naturalist, 156, 478–494.

Khan, M.F. & Panikkar, P. (2009) Assessment of impacts of inva-
sive fishes on the food web structure and ecosystem proper-
ties of a tropical reservoir in India. Ecological Modelling, 220, 
2281–2290.

Kitahara, M. & Fujii, K. (1994) Biodiversity and community struc-
ture of temperate butterfly species within a gradient of human 
disturbance: an analysis based on the concept of generalist vs. 
specialist strategies. Population Ecology, 36(2), 187–199.

Kortsch, S., Primicerio, R., Aschan, M., Lind, S., Dolgov, A.V. & 
Planque, B. (2019) Food-web structure varies along environmen-
tal gradients in a high-latitude marine ecosystem. Ecography, 42, 
295–308.

Lande, R. (1993) Risks of population extinction from demographic 
and environmental stochasticity and random catastrophes. 
American Naturalist, 142, 911–927.

https://orcid.org/0000-0002-7390-1120
https://orcid.org/0000-0002-7390-1120
https://orcid.org/0000-0002-7390-1120
https://orcid.org/0000-0003-3765-4633
https://orcid.org/0000-0003-3765-4633
https://orcid.org/0000-0003-3765-4633
https://orcid.org/0000-0002-5107-7265
https://orcid.org/0000-0002-5107-7265
https://orcid.org/0000-0002-5107-7265
http://ecobase.ecopath.org
https://cran.r-project.org/package=raster
https://cran.r-project.org/package=raster


12  |      HUMAN DISTURBANCES AND FOOD WEB TOPOLOGY

Larson, E.I., Poff, N.L., Atkinson, C.L. & Flecker, A.S. (2018) 
Extreme f looding decreases stream consumer autochthony by 
increasing detrital resource availability. Freshwater Biology, 
63, 1483–1497.

Layer, K., Riede, J.O., Hildrew, A.G. & Woodward, G. (2010) Food 
web structure and stability in 20 streams across a wide pH gradi-
ent. Advances in Ecological Research, 42, 265–299.

Ledger, M.E., Edwards, F.K., Brown, L.E., Milner, A.M. & 
Woodward, G. (2011) Impact of simulated drought on ecosystem 
biomass production: an experimental test in stream mesocosms. 
Global Change Biology, 17, 2288–2297.

Lee, T.M. & Jetz, W. (2011) Unravelling the structure of species extinc-
tion risk for predictive conservation science. Proceedings of the 
Royal Society B: Biological Sciences, 278, 1329–1338.

Link, J. (2002) Does food web theory work for marine ecosystems? 
Marine Ecology Progress Series, 230, 1–9.

López-Rodríguez, M.J., Peralta-Maraver, I., Gaetani, B., Sainz-
Cantero, C.E., Fochetti, R. & de Figueroa, J.M.T. (2012) 
Diversity patterns and food web structure in a Mediterranean 
intermittent stream. International Review of Hydrobiology, 97, 
485–496.

Marina, T.I., Saravia, L.A., Cordone, G., Salinas, V., Doyle, S.R. & 
Momo, F.R. (2018) Architecture of marine food webs: To be or 
not be a ‘small-world.’. PLoS One, 13, e0198217.

Martinez, N.D., Hawkins, B.A., Dawah, H.A., Feifarek, B.P., Ecology, 
S. & Apr, N. (1999) Effects of sampling effort on characterization 
of food-web structure. Ecology, 80, 1044–1055.

Matias, M.G., Pereira, C.L.C.L., Raposeiro, P.M., Gonçalves, V., 
Cruz, A.M., Costa, A.C. et al. (2017) Divergent trophic re-
sponses to biogeographic and environmental gradients. Oikos, 
126, 101–110.

MATLAB. (2010) version 7.10.0 (R2010a). Natick, Massachusetts: 
The MathWorks Inc.

McHugh, P.A., McIntosh, A.R. & Jellyman, P.G. (2010) Dual influ-
ences of ecosystem size and disturbance on food chain length in 
streams. Ecology Letters, 13(7), 881–890.

McKinney, M.L. (1997) Extinction vulnerability and selectivity: com-
bining ecological and paleontological views. Annual Review of 
Ecology and Systematics, 28, 495–516.

Mendoza, M. & Araújo, M.B. (2019) Climate shapes mammal com-
munity trophic structures and humans simplify them. Nature 
Communications, 10, 5197.

Mendoza, M. & Araújo, M.B. (2022) Biogeography of bird and mam-
mal trophic structures. Ecography, 2022, e06289.

Mestre, F. (2022) FWebs. Available from: https://github.com/FMest​
re1/fw_package [Accessed 1st July 2022].

Mestre, F., Gravel, D., García-Callejas, D., Pinto-Cruz, C., Matias, 
M.G. & Araújo, M.B. (2022) Disentangling food-web environ-
ment relationships: a review with guidelines. Basic and Applied 
Ecology, 61, 102–115.

Montoya, J.M. & Galiana, N. (2017) Integrating species interaction 
networks and biogeography. In: Moore, J.C., de Ruiter, P.C., 
McCann, K.S. & Wolters, V. (Eds.) Adaptive food webs: stabil-
ity and transitions of real and model ecosystems. Cambridge: 
Cambridge University Press, pp. 289–304.

Montoya, J.M. & Solé, R.V. (2002) Small world patterns in food webs. 
Journal of Theoretical Biology, 214(3), 405–412.

Mora, B.B., Gravel, D., Gilarranz, L.J., Poisot, T. & Stouffer, D.B. (2018) 
Identifying a common backbone of interactions underlying food 
webs from different ecosystems. Nature Communications, 9(1), 1–8.

Morales-Castilla, I., Matias, M.G., Gravel, D. & Araújo, M.B. (2015) 
Inferring biotic interactions from proxies. Trends in Ecology and 
Evolution, 30, 347–356.

Nelder, J.A. & Mead, R. (1965) A simplex method for function mini-
mization. The Computer Journal, 7, 308–313.

Paine, R.T. (2015). “Ecological Disturbance”. Encyclopedia 
Britannica, 14 Feb. 2019. https://www.brita​nnica.com/scien​ce/
ecolo​gical-distu​rbance [Accessed 12th July 2022].

Parker, S.M. & Huryn, A.D. (2006) Food web structure and func-
tion in two arctic streams with contrasting disturbance regimes. 
Freshwater Biology, 51(7), 1249–1263.

Pellissier, L., Albouy, C., Bascompte, J., Farwig, N., Graham, C., 
Loreau, M. et al. (2017) Comparing species interaction networks 
along environmental gradients. Biological Reviews, 93, 785–800.

Peralta-Maraver, I., López-Rodríguez, M.J., Robertson, A.L. & 
Tierno de Figueroa, J.M. (2020) Anthropogenic flow intermit-
tency shapes food-web topology and community delineation in 
Mediterranean rivers. International Review of Hydrobiology, 105, 
74–84.

Pereira, C.L., Gilbert, M.T.P., Araújo, M.B. & Matias, M.G. (2021) 
Fine-tuning biodiversity assessments: a framework to pair 
eDNA metabarcoding and morphological approaches. Methods 
in Ecology and Evolution, 12(12), 2397–2409.

Pimm, S.L. (1980) Properties of food webs. Ecology, 61, 219–225.
Pimm, S.L., Kitching, R.L. & Kitching, R.L. (1988) Food web pat-

terns: trivial flaws or the basis of an active research program? 
Ecology, 69, 1669–1672.

Pimm, S.L. & Ktiching, R.L. (1987) The determinants of food chain 
lengths. Oikos, 50, 302–307.

Pimm, S.L., Lawton, J.H. & Cohen, J.E. (1991) Food web patterns and 
their consequences. Nature, 350, 669–674.

Poisot, T., Bergeron, G., Cazelles, K., Dallas, T., Gravel, D., 
MacDonald, A. et al. (2021) Global knowledge gaps in spe-
cies interaction networks data. Journal of Biogeography, 48(7), 
1552–1563.

Poisot, T. & Gravel, D. (2014) When is an ecological network complex? 
Connectance drives degree distribution and emerging network 
properties. PeerJ, 2014, e251.

Power, M.E., Holomuzki, J.R. & Lowe, R.L. (2013) Food webs in 
Mediterranean rivers. Hydrobiologia, 719, 119–136.

Purvis, A., Gittleman, J.L., Cowlishaw, G. & Mace, G.M. (2000) 
Predicting extinction risk in declining species. Proceedings of the 
Royal Society B: Biological Sciences, 267, 1947–1952.

Pyle, D. (1999) Data preparation for data mining. San Francisco, CA: 
Morgan Kaufmann Publishers.

Quental, T.B. & Marshall, C.R. (2013) How the Red Queen drives ter-
restrial mammals to extinction. Science, 341(6143), 290–292.

Quince, C., Higgs, P.G. & McKane, A.J. (2005) Deleting species from 
model food webs. Oikos, 110, 283–296.

R Core Team. (2021) R: A language and environment for statisti-
cal computing. Vienna, Austria: R Foundation for Statistical 
Computing. https://www.R-proje​ct.org/ [Accessed 1st June 
2022].

Raffaelli, D. (2005) Tracing perturbation effects in food webs: the po-
tential and limitation in experimental approaches. In: de Ruiter, 
P.C., Wolters, V. & Jo (Eds.) Dynamic food webs: multispecies 
assemblages, ecosystem development and environmental change. 
Boston: Academic Press, pp. 348–353.

Raffaelli, D. & Moller, H. (1999) Manipulative field experiments in 
animal Ecology: do they promise more than they can deliver? 
Advances in Ecological Research, 30, 299–338.

Raup, D.M. & Gould, S.J. (1993) Extinction: bad genes or bad luck? 
New York: WW Norton & Co.

Safi, K. & Pettorelli, N. (2010) Phylogenetic, spatial and environmen-
tal components of extinction risk in carnivores. Global Ecology 
and Biogeography, 19, 352–362.

Solé, R.V. & Valverde, S. (2004) Information theory of complex net-
works: on evolution and architectural constraints. Complex 
Networks, 650, 189–207.

Staniczenko, P.P.A., Lewis, O.T., Jones, N.S. & Reed-Tsochas, F. 
(2010) Structural dynamics and robustness of food webs. Ecology 
Letters, 13, 891–899.

Start, D., Barbour, M.A. & Bonner, C. (2020) Urbanization reshapes a 
food web. Journal of Animal Ecology, 89(3), 808–816.

Suraci, J.P., Gaynor, K.M., Allen, M.L., Alexander, P., Brashares, J.S., 
Cendejas-Zarelli, S. et al. (2021) Disturbance type and species life 

https://github.com/FMestre1/fw_package
https://github.com/FMestre1/fw_package
https://www.britannica.com/science/ecological-disturbance
https://www.britannica.com/science/ecological-disturbance
https://www.r-project.org/


      |  13MESTRE et al.

history predict mammal responses to humans. Global Change 
Biology, 27, 3718–3731.

Swihart, R.K., Gehring, T.M., Kolozsvary, M.B. & Nupp, T.E. (2003) 
Responses of ‘resistant’ vertebrates to habitat loss and fragmen-
tation: the importance of niche breadth and range boundaries. 
Diversity and Distributions, 9, 1–18.

Thompson, R.M., Brose, U., Dunne, J.A., Hall, R.O., Hladyz, S., Kitching, 
R.L. et al. (2012) Food webs: reconciling the structure and function 
of biodiversity. Trends in Ecology and Evolution, 27, 689–697.

Thompson, R.M. & Mcintosh, A.R. (1998) Disturbance, resource 
supply, and food-web architecture in streams. Ecology Letters, 
1, 200–209.

Thuiller, W., Lavergne, S., Roquet, C., Boulangeat, I., Lafourcade, B. 
& Araújo, M.B. (2011) Consequences of climate change on the 
tree of life in Europe. Nature, 470(7335), 531–534.

Tylianakis, J.M. & Morris, R.J. (2017) Ecological networks across en-
vironmental gradients. Annual Review of Ecology, Evolution, and 
Systematics, 48, 25–28 annurev-ecolsys-110316-022821.

Venter, O., Sanderson, E.W., Magrach, A., Allan, J.R., Beher, J., Jones, 
K.R. et al. (2016a) Global terrestrial human footprint maps for 
1993 and 2009. Scientific Data, 3, 160067.

Venter, O., Sanderson, E.W., Magrach, A., Allan, J.R., Beher, J., 
Jones, K.R. et al. (2016b) Sixteen years of change in the global 
terrestrial human footprint and implications for biodiversity 
conservation. Nature Communications, 7, 12558.

Vermaat, J.E., Dunne, J.A. & Gilbert, A.J. (2009) Major dimensions in 
food-web structure properties. Ecology, 90, 278–282.

de Visser, S.N., Freymann, B.P. & Olff, H. (2011) The Serengeti 
food web: empirical quantification and analysis of topological 

changes under increasing human impact. Journal of Animal 
Ecology, 80(2), 484–494.

Weisstein, E.W. (2021) Correlation Coefficient - - from Wolfram 
MathWorld. Available from: https://mathw​orld.wolfr​am.​
com/Corre​latio​nCoef​ficie​nt.html [Accessed 15th September 
2021].

Williams, R.J. & Martinez, N.D. (2000) Simple rules yield complex 
food webs. Nature, 404, 180–183.

Wood, S.A., Russell, R., Hanson, D., Williams, R.J. & Dunne, J.A. 
(2015) Effects of spatial scale of sampling on food web structure. 
Ecology and Evolution, 5, 3769–3782.

SU PPORT I NG I N FOR M AT ION
Additional supporting information can be found online 
in the Supporting Information section at the end of this 
article.

How to cite this article: Mestre, F., Rozenfeld, A. & 
Araújo, M.B. (2022) Human disturbances affect 
the topology of food webs. Ecology Letters, 00, 
1–13. Available from: https://doi.org/10.1111/
ele.14107

https://mathworld.wolfram.com/CorrelationCoefficient.html
https://mathworld.wolfram.com/CorrelationCoefficient.html
https://doi.org/10.1111/ele.14107
https://doi.org/10.1111/ele.14107

	Human disturbances affect the topology of food webs
	Abstract
	INTRODUCTION
	MATERIAL AND METHODS
	Food web and anthropogenic impact datasets
	Fuzzy categorisation of food webs
	Degree distribution
	Curve fitting and Pearson correlation coefficient (R)
	Power-­Law heuristics
	Gaussian heuristics
	Category membership

	Relating food web structure to human pressure
	Evaluation of food robustness to species extinction
	Food web structure and response to disturbance

	RESULTS
	DISCUSSION
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGEMENTS
	PEER REVIEW
	DATA AVAILAIBILITY STATEMENT

	REFERENCES


